SOCIUS: Socially Responsible Smart Cities
Lead PI:
Yasser Shoukry
Co-Pi:
Abstract

Every year, 3.5 million people in the US experience homelessness, with 1 in 30 children becoming homeless. Despite numerous government-sponsored programs and efforts by nonprofit organizations, many homeless people live in abject conditions. This research re-envisions smart city technologies to best serve those in need of access to basic resources including food, shelter and medical services. The proposed infrastructure will connect the currently disjoint efforts of public services, NGOs and private citizens, and use population-modeling and planning algorithms to match the varying and unpredictable supply with those who need it. In pursuit of the overarching goal of collecting and delivering services to maximize social welfare, this research will make advances in the science of population modeling, the analysis and design of human-centered planning algorithms, and technological challenges including secure and privacy-aware sensing modalities and mobile technologies.

As part of a human-centered design approach, interviews and observations will be conducted to understand user needs, and design a system that multiple stakeholders can use to report their needs and extra supply. This collected data will be used by non-profit organizations to strategically distribute resources. The real-world stakeholders such as food banks, food pantries, shelters, street medicine teams, and food rescue organizations will be closely involved in the design and evaluation process.

This research is high-risk and high-reward, and appropriate for EAGER. Failure means that the resulting planning algorithms will make unfair decisions and prioritize a few organizations or donors, or will make fair, but inefficient allocation decisions, which will endanger social justice and community well-being. Success will improve both efficiency of resource distribution and the quality of life of underserved populations in the United States. The completion of the project will produce 1) algorithms for optimal resource allocation that are both efficient and aware of human-in-the-loop concerns, and which can be used for other functions including disaster-response, and 2) communication infrastructure for non-profit organizations, volunteers, and populations in need, to coordinate other service activities. The project has potential for great societal impact: it will make charitable donations convenient and inexpensive for those with supply power, increasing the volume of donations and thereby reducing wastage. The outcome will be an improved realization of the philanthropic potential of the increasingly sharing nature of the American economy.

Yasser Shoukry
Yasser Shoukry received his Ph.D. in electrical engineering from the University of California, Los Angeles in 2015, where he was affiliated with both the Cyber-Physical Systems Lab and Networked and Embedded Systems Lab. He received an M.Sc. and B.Sc. degrees (with distinction and honors) in computer and systems engineering from Ain Shams University, Cairo, Egypt in 2010 and 2007, respectively. Between September 2015 and July 2017, Shoukry was a joint postdoctoral associate at UC Berkeley, UCLA and the University of Pennsylvania. Before pursuing his Ph.D. at UCLA, he spent four years as an R&D engineer in the automotive embedded systems industry. In 2017, Shoukry became an assistant professor of electrical and computer engineering at the University of Maryland, College Park. He joined the UC Irvine Department of Electrical Engineering and Computer Science in October 2019. He is the recipient of the NSF CAREER Award (2019), the Best Demo Award from the International Conference on Information Processing in Sensor Networks (IPSN) in 2017, the Best Paper Award from the International Conference on Cyber-Physical Systems (ICCPS) in 2016, and the Distinguished Dissertation Award from UCLA EE department in 2016. In 2015, he led the UCLA/Caltech/CMU team to win the NSF Early Career Investigators (NSF-ECI) research challenge. His team represented the NSF- ECI in the NIST Global Cities Technology Challenge, an initiative designed to advance the deployment of Internet of Things (IoT) technologies within a smart city. He is also the recipient of the 2019 George Corcoran Memorial Award for his contributions to teaching and educational leadership in the field of CPS and IoT.
Performance Period: 09/01/2016 - 08/31/2018
Institution: University of California-Los Angeles
Award Number: 1651858